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The main goal of the present paper is to approach the modeling of one of the most impor-
tant and critical failure modes for composite laminates which is known as interlaminar
delamination in the aeronautical structures. The analytical model is based on a frac-
ture mechanics approach; it’s used to estimate the total mixed mode energy release rate
for composite laminates. A finite element simulation has been achieved in combination
with the virtual crack closure technique (VCCT) to analyze the effect of temperature
on the interlaminar fracture toughness growth of a delaminated carbon/epoxy mate-
rial, namely IM7/8552 subjected to mechanical loading at variable temperatures. The
developed model may serve as the basis for treating different types of thermal and me-
chanical loading, different stacking sequences and thickness of lamina in order to build
safe working conditions for composite laminates.

Keywords: interlaminar fracture, failure, composite laminate, fracture toughness, tem-
peratures, delamination.

1. Introduction

The laminated composites are increasingly used for high-performance structural ap-
plications in many aerospace applications such as advanced aircraft fuselage, rocket
motor cases, pressure vessels, containment structures, and other components with
various shapes and sizes due to their number of advantages over conventional ma-
terials. They have exceptional characteristics such as: high specific strength and
stiffness, low density, good fatigue performance, resistance to corrosion and high
temperatures, ability to create complex shapes. For implementation of composite
materials in aviation, the most important feature is their behaviour on dynamic
loads and resistance to fatigue [1].
However, Fiber reinforced composites often exhibit complex failure mechanisms as
an interaction among various damage modes on both microscopic and macroscopic
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scales such as matrix cracking and interlaminar damage modes (Interfacial cracking
between layers) or delamination.
This paper is an attempt to characterise delamination, the most frequent failure
mode in laminated composite materials and it may cause catastrophic failure in
critical aeronautic structures. In the composite materials literature, delamination
or interlaminar cracking is generally assumed to take place at the interface between
adjacent plies and rather treated as a fracture process between layers, than to
consider it, more precisely, as a fracture between constituents or within one of the
constituents. The growth of this phenomenon leads to a degradation of stiffness
and an eventual failure of the composite structure.
In recent years, several studies have been carried out into the fracture of composites
in their different stress modes under static loading, of which modes I and II have at-
tracted more attention. A series of numerical investigations presented in literatures
lead to excellent results. These methods are more suitable because of their low cost
and time consuming. R. Krueger developed a finite element models using 3D shell
elements which demonstrated good accordance with experimental results [2].
The calculation of delamination can be performed using cohesive elements [3, 4],
which combine aspects of strength based analysis to predict the onset of damage at
the interface and fracture mechanics to predict the propagation of a delamination.
Initiation and propagation of delamination studied numerically with using cohesive
elements and different constitutive laws lead to excellent results [5].
Over the past two decades, The criteria used to characterize the onset and growth of
composite reinforced delamination under mixed-mode loading conditions are those
usually established in terms of the components of the energy release rate and fracture
toughness. It is assumed that the growth of delamination in composite structures
starts when strain energy release rate G under service loads exceeds the fracture en-
ergy GC. Wang et al. evaluated strain energy release rates for the damage-tolerance
analysis of skin-stiffener interfaces using Finite element analysis in conjunction with
the virtual-crack-closure technique (VCCT) [6, 7]. They used a wall offset to move
the nodes from the reference surfaces to a coincident location on the interface be-
tween the skin and the ?ange. The present study focuses on delamination testing un-
der opening, shearing and mixed-mode loading conditions. A number of approaches
have been proposed to develop test specimens with such combined normal and shear
stresses on the delamination plane [8, 9]. The pure mode I values for delamination
fracture toughness GIC were obtained using a split unidirectional laminate loaded
as a double cantilever beam (DCB). Dattaguru et al. [10] calculated mode I and
mode II energy release rates of Cracked-Lap Shear (CLS) specimen from a finite
element analysis. They showed that the ratio of mode I to mode II energy release
rate is strongly affected by the adhesive modulus and the adherent thickness. Man-
galgiri and Johnson [11] described a technique for sizing the optimal thickness of
adherents for CLS specimen to assure delamination instead of adherent failure.
In the present work, an attempt has been made to investigate the behaviour of the
mixed-mode delamination mechanism of Carbone/Epoxy composite material by
adopting one of the numerical intelligence concepts that have proved to be useful
for various engineering applications. For this purpose, a numerical model has been
developed by using a special shell finite element model that guarantees interlaminar
shear stress continuity between different oriented layers, at a temperature range of
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operating conditions for composites in aeronautics. And then, generate mode I and
mode II components of mixed-mode fracture toughness.

2. Finite Element methodology end data preparation

In theory, the failure criteria used, in general to predict delamination propagation
under mixed-mode loading conditions are usually established in terms of the com-
ponents of the energy release rate and fracture toughness. It is assumed that when
the energy release rate, G, exceeds the critical value, the critical energy release rate
Gc, delamination grows.
The expression proposed by Benzeggagh and Kenane [12] for the critical energy
release rate Gc is:

Gc = GIc + (GIIc −GIc)

(
GShear

GT

)η

(1)

where η maintains the shape of the failure locus in the mixed-mode plane and
the most accurate failure criterion is the one matching the material response when
plotted on this mixed-mode diagram:

GT = GI +GShear with GShear = GII +GIII (2)

This criterion is recommended by ASTM standards [13] as the preferred interaction
envelope for mixed-mode delamination.
Further, the Finite Element Method is a widely used technique for computing strain
energy release rates for linear elastic fracture problems.
The mode I and mode II energy release rate were obtained using the virtual crack
closure technique [14, 15]. That is, G I and G II were calculated as follows:{

GI = lim δa→0
Fy(νc−νd)

2δa

GII = lim δa→0
Fx(uc−ud)

2δa

(3)

The total energy release rate is:

GT = GI +GII (4)

where, ∆a is a crack extension size, Fx and Fy are forces in x- and y-direction.
The displacements, uc (ud) and vc (vd) are the sliding and opening displacements
at node ”c” (node ”d”) on the crack faces, respectively illustrated in Fig. 1.
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Figure 1 VCCT nodes near the crack tip
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In this paper, a finite element modeling with a series of a virtual crack closure
technique has been achieved.

The Cracked lap shear (CLS) specimen (Fig. 2) made of prepregs high-performance
unidirectional carbon fiber reinforced epoxy Hexcel (IM7/8552) used for fracture
tests was constructed using Abaqus Finite Element code [16] in order to determine
the critical interlaminar fracture toughness components mode 1 and II of Carbon-
Epoxy composite material:
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P

Figure 2 Shape and size of CLS specimen (All dimensions in mm)

The cracked-lap shear (CLS) specimen was originally developed for testing ad-
hesive bonds between metals, and was first used to evaluate mixed-mode fracture
toughness of composites.

The compliance of the CLS specimen is given by:

C(a) =
1

EBh2

[
2L+ a

(
h1

h2
− 1

)]
(5)

The total energy release rate is given as:

GT = GI +GII =
P 2

2EB2

(
h1 − h2

h1h2

)
(6)

The volume fraction of carbon fiber in the prepreg is 60%. The material prop-
erties used are shown in Tab. 1 and Tab. 2, measured in a previous investigation
[17, 18, 19], With a nominal ply thickness of 0.0626 mm and the reference stacking
sequence considered in the study is [90-0]8 s. The values for tensile and compressive
fiber fracture can be obtained from compact tension (CT) and compact compres-
sion (CC) tests as proposed by Pinho et al. [20]. According to this formulation, the
value depends on the laminate stacking configuration.

3. Results and discussions

The cracked-lap shear (CLS) specimen was modeled numerically in 3-D plane shell
with the dimension parameters previously defined in Fig. 2.
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Table 1 Elastic ply properties

Volume fraction Vf (%) Elastic modulus (GPa)
E1 E2 = E3 G12 = G13 G23 ν12 = ν13

60 171.42 9.08 5.29 3.98 0.32

Table 2 Ply strength properties

Strengths (MPa)
XT XC Y T Y c SL

2326.2 1200.1 62.3 200.8 92.3

Figure 3 Maximum equivalent stresses distribution

For mechanical analysis first, the total energy release rate was obtained as:
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Figure 4 Total energy release rate as function of delamination length

The CLS specimen was loaded in tension by applying load to both the lap, and
to the strap and lap part of the specimen at, -60◦C, 20◦C, 60◦C and 80◦C. This
temperature range has been chosen in view of the fact that it is representative of
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the operating temperatures experienced by the composite materials in aeronautical
applications.
As a results, The mode I and mode II energy release rates, GI and GII, were
calculated under a plane stress condition. The variation of GI and GII for the CLS
specimen is shown in Fig. 5.

Figure 5 Mode I & Mode II Energy release rate distributions

The interlaminar fracture toughness under Mode I and Mode II, as well as mixed-
mode loading, have been investigated for Carbone/Epoxy composite material under
variable temperature values.
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Figure 6 Total Energy release rate as function of delamination length at variable temperatures

It’s concluded that the total energy release rate increases with the increasing in
temperature values. Fig. 6 illustrates the variation of Total energy release rate as a
function of delamination length under variable temperatures. It’s well seeing that
the major increasing of G is at 80◦C and reaches its minimum values at -60◦ C.
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Figure 7 Mixed-Mode fracture Energies envelope

Fig. 7 illustrates the shape of the fracture envelope for Cracked Lap Shear
specimen, it explores the interaction between the values of G II and G I in mixed-
mode fracture toughness.

4. Conclusions

The objective is to attempt understanding more closely delamination mechanism
under mode I, mode II and mixed-mode loading conditions.

Static fracture analysis were conducted for unidirectional CLS specimens to
determine the total energy release rate of Carbone/Epoxy composite laminates and
to characterize the mixed-mode delamination propagation at variable temperatures.
The GI, GII, mode I and mode II energy release rates were calculated from finite
element analysis in combination with the virtual closure technique. The total strain
energy release rate G is evaluated, and it’s concluded that the gradient of the
temperature causes an effect of accelerating or retarding the growth of delamination,
depending on the loading regime. It was found that a linear fracture envelope may
be suitable for a CLS specimen.
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